# The Banach–Tarski paradox - Part II

• Sep 29, 2013 · 2:30 PM

The Banach–Tarski paradox is a theorem in set-theoretic geometry which states the following: Given a solid ball in 3

‑dimensional space, there exists a decomposition of the ball into a finite number of non-overlapping pieces (i.e., disjointsubsets), which can then be put back together in a different

This is often stated colloquially as "a pea can be chopped up and reassembled into the Sun."
way to yield twoidentical copies of the original ball. The reassembly process involves only moving the pieces around and rotating them, without changing their shape. However, the pieces themselves are not "solids" in the usual sense, but infinite scatterings of points. A stronger form of the theorem implies that given any two "reasonable" solid objects (such as a small ball and a huge ball), either one can be reassembled into the other.

The reason the Banach–Tarski theorem is called a paradox is that it contradicts basic geometric intuition. "Doubling the ball" by dividing it into parts and moving them around by rotations and translations, without any stretching, bending, or adding new points, seems to be impossible, since all these operations preserve the volume, but the volume is doubled in the end. - Wikipedia

### 6 went

• ##### Rehana R.
###### Co-Organizer
• A former member
• A former member
+1 guest

### Seattle, WA

Founded Jun 5, 2008

#### People in this Meetup are also in:

• ##### Seattle Technical Forum

4,665 Members

• ##### Puget Sound Programming Python (PuPPy)

2,443 Pythonistas

• ##### Learn to Code Seattle

2,283 Aspiring Coders

• ##### Seattle useR Group (R Programming Language)

1,830 Seattle Area useRs

• ##### Seattle Hackathons

1,526 Hackers

• ##### Seattle Soccer Club

4,818 Players