The Banach–Tarski paradox - Part II

We will start with a quick overview of the last meeting. 

The Banach–Tarski paradox is a theorem in set-theoretic geometry which states the following: Given a solid ball in 3

‑dimensional space, there exists a decomposition of the ball into a finite number of non-overlapping pieces (i.e., disjointsubsets), which can then be put back together in a different


This is often stated colloquially as "a pea can be chopped up and reassembled into the Sun."
way to yield twoidentical copies of the original ball. The reassembly process involves only moving the pieces around and rotating them, without changing their shape. However, the pieces themselves are not "solids" in the usual sense, but infinite scatterings of points. A stronger form of the theorem implies that given any two "reasonable" solid objects (such as a small ball and a huge ball), either one can be reassembled into the other.

The reason the Banach–Tarski theorem is called a paradox is that it contradicts basic geometric intuition. "Doubling the ball" by dividing it into parts and moving them around by rotations and translations, without any stretching, bending, or adding new points, seems to be impossible, since all these operations preserve the volume, but the volume is doubled in the end. - Wikipedia

 

Join or login to comment.

6 went

  • Nile
    Event Host
  • Sister E.
    Co-Organizer
    Event Host
  • Rehana R.
    Co-Organizer
  • A former member
  • A former member
    +1 guest

People in this
Meetup are also in:

Create your own Meetup Group

Get started Learn more
Allison

Meetup has allowed me to meet people I wouldn't have met naturally - they're totally different than me.

Allison, started Women's Adventure Travel

Sign up

Meetup members, Log in

By clicking "Sign up" or "Sign up using Facebook", you confirm that you accept our Terms of Service & Privacy Policy