Past Meetup

February SF Metrics Meetup

This Meetup is past

160 people went

Heavybit, Inc.

325 9th Street · San Francisco, CA

How to find us

If the front door is closed, enter the building via Ringold Street.

Location image of event venue

Details

February's Meetup is all about Anomaly Detection. We have fantastic talks by Arun Kejariwal from Twitter and Cody Rioux from Netflix.

Arrive around 6:30pm to catch up with other quantifiers over food and drinks, talks start at 7:00pm. Space is limited, please RSVP.

Statistical Learning-based Automatic Anomaly Detection @Twitter

Arun Kejariwal, Twitter (https://twitter.com/)

Twitter developed novel statistical techniques for automatically detecting anomalies in cloud infrastructure data. Specifically, the techniques employ statistical learning to detect anomalies in both application, and system metrics.

• They employ time series decomposition to filter the trend and seasonal components of the time series.

• They use robust statistical metrics – median and median absolute deviation (MAD) – to accurately detect anomalies, even in the presence of seasonal spikes.

The techniques that Arun shall present were evaluated with a wide variety of time series (system and application metrics obtained from production as well stock data) and have been deployed in production at Twitter. Arun shall demonstrate the efficacy of the proposed techniques using production data.

Netflix Outlier and Anomaly Detection

Cody Rioux, Netflix (https://www.netflix.com/us/)

Kepler is an in house outlier and anomaly detection system that currently runs on an in house solution for running python analytics in Netflix' cloud environment, specifically with the goal of supporting reliability and availability efforts within Netflix's AWS environment. Kepler runs against Netflix's telemetry data, and produces alerts using the same mechanisms as their classical alerting system.

Cody will discuss the motivations behind the project, current uses within the environment, some technical details of the algorithms used, and then view some examples of the situations they are able to detect and respond to in an automated fashion.

----

Legal Drinking Age Required: We will be serving beer at the Meetup. We will not serve alcohol to persons under the age of 21.