Vergangene Events

Typescript & Flow, Apache Spark, and Jigsaw

Dieses Meetup liegt in der Vergangenheit

116 Personen haben teilgenommen

Bild des Veranstaltungsortes

Details

Getyptes JavaScript mit TypeScript und Flow (Oliver Zeigermann)

JavaScript ist die natürliche Wahl für die Entwicklung im Browser. Für größere Projekte ist JavaScript im Vergleich zu C# oder Java jedoch im Nachteil. TypeScript und Flow sind zwei unterschiedliche Ansätze zum Ausgleich der Nachteile.
Flow ist ein statischer Typen-Checker. Er wurde von Facebook entwickelt, um in deren JavaScript- und insbesondere React-Code Fehler zu finden. Dazu können zusätzliche Typeninformationen hinzugezogen werden.

TypeScript ist eine Spracherweiterung von JavaScript, die durch den TypeScript-Compiler in unterschiedliche JavaScript-Versionen zurückübersetzt werden kann. Hier steht eher die Werkzeug-Unterstützung im Vordergrund. TypeScript wird aktiv von Microsoft entwickelt und ist die primäre Sprache für Googles Angular 2 Framework.

In diesem Talk werde ich in beide Ansätze einführen und die wesentlichen Gemeinsamkeiten und Unterschiede erläutern. Dazu besprechen wir, welcher Ansatz wann sinnvoll ist.

Oliver Zeigermann ist ein exzellenter Entwickler mit einem feinen Gespür für Softwarearchitektur. Mit dem erfahrenen Blick eines Java-Spezialisten erschließt er das Thema JavaScript für große Projekte. Kunden schätzen seinen Pragmatismus, seine technologische Expertise und seine lockere Art bei der Problemlösung. Erkenntnisse und Best Practices zu JavaScript-Architekturen und –Frameworks bringt er gerne auf Konferenzen und in Netzwerken unters Volk.

Apache Spark (Daniel Pape)

Spark ist eine vereinheitlichte Plattform zur verteilten Verarbeitung von Daten in einem Cluster und eine Art Schweizer Armeemesser für Big Data-Anwendungen. Anstatt wie im Fall von Hadoop Mapper und Reducer zu implementieren, bietet Spark ein höheres Programmiermodell, welches sich an der Collection-API von Scala orientiert. Neben der Anwendungsprogrammierung in Scala selbst, werden auch die Sprachen Java, Python und R unterstützt. Vor allem die letzten beiden bilden ein Plus für Spark in der Data Science-Community. Darüber hinaus ist Spark sehr verbindungsfreudig: Daten können aus CSV-Dateien, relationalen Datenbanken, Cassandra, Kafka, HDFS, etc. geladen und -schrieben werden. Die API unterstützt zudem das Schreiben von Batch- und Streaming-Anwendungen mit einer einheitlichen Handschrift.

Data Science ist eine interdisziplinärer Mix aus den Feldern Statistik/Mathematik, Maschinellen Lernen und Informatik. Das Ziel von Data Science ist aus Rohdaten die darin schlummernden Informationen zu extrahieren und Vorhersagen zu treffen. Spark bietet mit MLlib/ML umfangreiche Bibliotheken für Maschinelles Lernen und kann in Verbindung mit Python und Scala in einer interaktiven Shell oder auch Notebooks wie Apache Zeppelin zur explorativen Datenanalyse und Modellierung benutzt werden. Interaktives, kollaboratives und iteratives Arbeiten auf echten Daten aus dem Produktionssystem und nah an der Software-Entwicklungsseite machenSpark zu einem interessanten Tool im Bereich Data Science.

Der Vortrag setzt nur Kenntnisse in Java voraus. Wir werden uns den Themen Data Science, Machine Learning und vor allem Spark anhand des Anwendungsfalls der Erkennung von Ausreißern (outlier detection) ansehen.

Dr. Daniel Pape arbeitet als Data Scientist/Analytics Engineer im Data Science-Team der codecentric AG. Er ist Mathematiker und implementiert Lösungen am liebsten selbst mit Spark und Scala.

Project Jigsaw (Dalibor Topic)

In diesem Vortrag geht es um eine Einführung in die Konzepte von Project Jigsaw anhand von kurzen Beispielen: Wie man Module baut, kompiliert, miteinander verlinkt, oder einfach nur laufen lässt. Dabei werden aus der Perspektive der Modularisierung des JDK verschiedene Wege zur Modularisierung bestehender Software beleuchtet, und gegenübergestellt.

Dalibor Topic lebt in Hamburg und arbeitet als Principal Product Manager für Oracle. Er trat dem OpenJDK-Projekt bei, um aus Java ein erfolgreiches OpenSource-Projekt zu machen, um Java in Linux-Distributionen zu integrieren und als allgemeiner Kontakt zur Java F/OSS-Community. Er trat dem strategischen Java-Team bei Oracle bei, um bei der langfristigen Planung zu helfen.