addressalign-toparrow-leftarrow-rightbackbellblockcalendarcameraccwcheckchevron-downchevron-leftchevron-rightchevron-small-downchevron-small-leftchevron-small-rightchevron-small-upchevron-upcircle-with-checkcircle-with-crosscircle-with-pluscrossdots-three-verticaleditemptyheartexporteye-with-lineeyefacebookfolderfullheartglobegmailgooglegroupshelp-with-circleimageimagesinstagramlinklocation-pinm-swarmSearchmailmessagesminusmoremuplabelShape 3 + Rectangle 1ShapeoutlookpersonJoin Group on CardStartprice-ribbonShapeShapeShapeShapeImported LayersImported LayersImported Layersshieldstartickettrashtriangle-downtriangle-uptwitteruserwarningyahoo

The Navier-Stokes Equation

 

In physics, the Navier–Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the motion offluid substances. These equations arise from applying Newton's second law to fluid motion, together with the assumption that the fluid stress is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term.

The equations are useful because they describe the physics of many things of academic and economic interest. They may be used to model the weatherocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes equations in their full and simplified forms help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. Coupled with Maxwell's equations they can be used to model and studymagnetohydrodynamics.

 

Join or login to comment.

4 went

People in this
Meetup are also in:

Sign up

Meetup members, Log in

By clicking "Sign up" or "Sign up using Facebook", you confirm that you accept our Terms of Service & Privacy Policy