[PDG 471] Recursive Language Models
Details
Link to article: https://arxiv.org/pdf/2512.24601
Title: Recursive Language Models
Content: We study LLMs to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs while having comparable (or cheaper) cost per query
Slack link: ml-ka.slack.com, channel: #pdg. Please join us -- if you cannot join, please message us here or to mlpaperdiscussiongroupka@gmail.com.
In the Paper Discussion Group (PDG) we discuss recent and fundamental papers in the area of machine learning on a weekly basis. If you are interested, please read the paper beforehand and join us for the discussion. If you have not fully understood the paper, you can still participate – everyone is welcome! You can join the discussion or simply listen in. The discussion is in German or English depending on the participants.
