Build Your Own Enterprise RAG - E2E Tech for Text, Tables, Images, Audio & Video


Details
About the Speakers -
Ritu Jain, https://www.linkedin.com/in/ritu-jain-1316355a/
https://www.linkedin.com/in/sailee-mogale/
https://www.linkedin.com/in/ameyanadkarni/
What will be covered?
# πΉ Enterprise RAG / RAC Pipeline β Techniques, Tools, Frameworks & Platforms
***
## 1. Data Ingestion & Preparation
- Sources: text docs (PDF, Word), tables (CSV, SQL), images, audio, video, APIs, web.
- Tools/Frameworks: LangChain, LlamaIndex, Haystack, custom ETL.
- Techniques:
- Text extraction (PDFPlumber, Apache Tika).
- OCR (Tesseract, LayoutLM, DocTR).
- Speech-to-text (Whisper, Deepgram).
- Video transcription/scene detection.
***
## 2. Chunking & Segmentation
- Text: fixed-size, sliding window, recursive (LangChain), semantic split.
- Tables: row-wise, column-wise, schema-aware chunking.
- Images: patch-based, caption-based (BLIP, SAM).
- Audio: transcript-based chunking.
- Video: frame sampling, scene segmentation, timeline-based splits.
***
## 3. Embeddings (Vectorization)
Purpose: convert raw inputs into dense vectors that capture semantic meaning β used for similarity, retrieval, clustering.
- Inputs & Outputs by Modality:
- Text: string β vector (e.g., 768β1536 dims).
- Tables: row/column β vector capturing structured meaning.
- Images: pixels β vector encoding visual features.
- Audio: waveform/spectrogram β vector encoding phonetic/semantic features.
- Video: frames+audio β temporal multimodal vector.
- Popular Models:
- Text (general): OpenAI text-embedding-3, Cohere, HuggingFace E5, MiniLM, Instructor.
- Domain-specific: BioBERT, SciBERT, FinBERT, LegalBERT.
- Multilingual: LaBSE, mUSE, multilingual-E5.
- Images: CLIP, BLIP, Florence.
- Audio: Wav2Vec2, Whisper embeddings.
- Video: VideoCLIP, VIOLET.
***
## 4. Vector Databases / Vector Stores
- Open-source: FAISS, Milvus, Weaviate, Qdrant, pgvector.
- Managed/Cloud: Pinecone, Chroma Cloud, Vertex AI Matching Engine, Azure Cognitive Search, AWS Kendra/OpenSearch.
- Hybrid Search: Vespa, Elastic, Weaviate (BM25 + dense).
***
## 5. Indexing & Search Techniques
- Structures: Flat, IVF, HNSW, PQ.
- Hybrid Search: combine sparse (BM25) + dense (embeddings).
- Specialized Indexing:
- Text β inverted + semantic.
- Tables β schema/key indexing.
- Images β perceptual hashing + vectors.
- Audio/Video β fingerprinting, temporal indexing.
***
## 6. Retrieval & Augmentation
- Frameworks: LangChain retrievers, LlamaIndex query engines, Haystack retrievers.
- Techniques:
- Top-K similarity, Maximal Marginal Relevance (MMR).
- Reranking: cross-encoders (Cohere Rerank, bge-reranker).
- Adaptive retrieval (context window control).
***
## 7. Generation Layer (LLM Integration)
- LLMs: GPT-4/5, Claude, Llama 3, Gemini, Mistral, Falcon.
- Frameworks: LangChain, LlamaIndex, Semantic Kernel.
- Strategies:
- Direct RAG prompting.
- Multi-query retrieval.
- Chain-of-thought, citations, tool-augmented responses.
***
## 8. Orchestration & Application Layer
- Frameworks: LangChain, LlamaIndex, Semantic Kernel, Haystack, DSPy.
- Agents & Pipelines: LangChain Agents, CrewAI, AutoGPT.
- Integrations: REST APIs, GraphQL, enterprise connectors (SharePoint, Salesforce, Slack).
***
## 9. Evaluation & Monitoring
- Metrics: precision@k, recall, MRR, nDCG, hallucination rate.
- Tools: Ragas, DeepEval, TruLens, LangSmith, Arize AI, Weights & Biases.
- Continuous Improvement: human feedback loops, active learning.
***
## 10. Deployment & Scaling
- Serving: FastAPI, BentoML, TorchServe, HuggingFace Inference Endpoints.
- Platforms: Kubernetes, Docker, Ray, Airflow.
- Enterprise Concerns: auth, security, compliance (GDPR, HIPAA), caching (Redis, Vespa), cost optimization.

Build Your Own Enterprise RAG - E2E Tech for Text, Tables, Images, Audio & Video