How ChatGPT Works: The Secrets of Modern LLMs
Details
💡 Perfect for Devs, ML Engineers, Founders, and Curious Professionals
***
## 📅 Total Duration: 2 Hours
Format: 80 mins talk + 25 mins live demo + 15 mins Q&A
Goal: Understand how ChatGPT is actually built, how it thinks, and how to build with or fine-tune LLMs.
***
## 🧠 Full 2-Hour Content Breakdown
***
### ⏱️ 0–10 min: Introduction
- 🤔 What is an LLM?
- 📊 Real-world applications (ChatGPT, GitHub Copilot, Claude, etc.)
- 🧭 Session agenda & what they’ll walk away with
***
### ⏱️ 10–30 min: The Core Brain – Transformers
- 🤖 How transformers work: Self-attention, multi-head attention
- 🔁 Sequence-to-sequence & next-token prediction
- 🧱 Architecture of GPT (blocks, layers, position embeddings)
📊 Diagram: Full GPT model stack
🎥 Analogy: Predict the next word in a sentence like “autocomplete on steroids”
***
### ⏱️ 30–50 min: Training Pipeline – How LLMs Learn
- 🏗️ Pretraining: Language modeling objective (next-token prediction)
- 📚 Data: What’s used to train GPT-style models (web, code, books)
- 🧠 Fine-tuning:
- Instruction tuning (follow commands)
- RLHF (Reinforcement Learning with Human Feedback)
📊 Explain PPO + Reward Model
💡 Why RLHF makes ChatGPT feel “polite” and “useful”
***
### ⏱️ 50–70 min: Inference & System Design
- 🧩 Tokenization (BPE): What is a “token”? Why does it matter?
- 🔄 Token flow: Input → Model → Output
- ⚙️ System architecture:
- API, frontend, backend
- GPU inference, context caching, rate limiting
📊 Architecture Diagram: End-to-end flow of a ChatGPT API request
***
### ⏱️ 70–80 min: “Secrets” of ChatGPT’s Performance
| Secret | Insight |
| ------ | ------- |
| 🧠 Mixture-of-Experts (MoE) | GPT-4 may use sparse routing |
| 🚀 FlashAttention | Faster attention = cheaper inference |
| ⚖️ Alignment training | Safety filters & refusal mechanisms |
| 🧩 Prompt Engineering | The real “art” of using LLMs |
***
### ⏱️ 80–105 min: Live Demos: How to Use or Build with LLMs
Choose any 2-3 short demos from below:
#### ✅ 1. Use OpenAI GPT-4 API
- Send a prompt using Python (openai SDK)
- Show how token count and cost work
#### ✅ 2. Retrieval-Augmented Generation (RAG)
- Build a “Chat with your Docs” using LangChain or LlamaIndex
- Load PDF → embed → chat
#### ✅ 3. LoRA Fine-tuning (optional if audience is ML-heavy)
- Use HuggingFace + LoRA to fine-tune Mistral/LLama on custom data
***
### ⏱️ 105–120 min: Q&A + Wrap-Up
- Top questions: safety, hallucinations, token limits, copyright
- Bonus topics to explore: Agents, Multimodal LLMs, Vector DBs
- Share: GitHub repo, prompt sheet, learning links
Join Zoom Meeting
[https://us02web.zoom.us/j/86369463178?pwd=mhZqUrFbGvomnSgV8oDdUIwrEEUnf1.1](https://www.google.com/url?q=https://us02web.zoom.us/j/86369463178?pwd%3DmhZqUrFbGvomnSgV8oDdUIwrEEUnf1.1&sa=D&source=calendar&usd=2&usg=AOvVaw0yWqUaOdTCWtxujAFhyGrR)
Meeting ID: 863 6946 3178
Passcode: 673750
