Skip to content

Details

Data Science is concerned with the analysis of large amounts of data. When the volume of data is really large, it requires the use of cooperating, distributed machines. The most popular method of doing this is Hadoop, a collection of programs to perform computations on connected machines in a cluster. Hadoop began life as an open-source implementation of MapReduce, an idea first developed and implemented by Google for its own clusters. Though Hadoop's MapReduce is Java-based, and quite complex, this talk focuses on the "streaming" facility, which allows Python programmers to use MapReduce in a clean and simple way. We will present the core ideas of MapReduce and show you how to implement a MapReduce computation using Python streaming. The presentation will also include an overview of the various components of the Hadoop "ecosystem."

NYC Data Science Academy (http://www.nycdatascience.com) is excited to welcome Sam Kamin who will be presenting an Introduction to Hadoop for Python Programmers a well as a discussion of MapReduce with Streaming Python.

Sam Kamin was a professor in the University of Illinois Computer Science Department. His research was in programming languages, high-performance computing, and educational technology. He taught a wide variety of courses, and served as the Director of Undergraduate Programs. He retired as Emeritus Associate Professor, and worked at Google until taking his current position as VP of Data Engineering in NYC Data Science Academy.

Members are also interested in