What we're about

Codemotion is a unique platform that connects IT professionals, tech communities and international companies.

We organise the largest tech conferences for software developers in EMEA, engaging a vibrant community of more than 450.000 professionals!

Our events are open to all languages and technologies; we pride ourselves on bringing together a diverse group of IT professionals eager to learn and discuss the hottest tech trends.

Upcoming events (2)

AI evening: Applying DevOps good practices and use cases for the connected home

❗ IMPORTANT! Sign up: bit.ly/Meetup-Ams-AI Come and join us for this wonderful AI meetup where we'll go through the great outcomes of implementing DevOps good practices to AI and we'll also go over some real-life use cases artificial intelligence brings to home automation business. Event schedule: 18:00 Doors open 18:15 Pizza and beer 🍕🍻(Big thank you to Copernica for hosting us!) 18:45 Intro by Codemotion 19:00 Talk #1: What AI can learn from DevOps - a lesson on ML and Continuous Evaluation - Thiago de Faria (Head of Solutions Engineering @LINKIT | AI Engineer https://www.linkedin.com/in/thiagoavadore/) 19:45 Talk #2: AI and Machine Learning for the connected home - Rik van der Vlist (Data Scientist at Quby https://www.linkedin.com/in/rik-van-der-vlist-124b62138/) 20:30 Drinks and networking ➡️Talk #1: What AI can learn from DevOps - a lesson on ML and Continuous Evaluation - Thiago de Faria AI is the buzzword while ML is the underlying component... but when do we use ML? To solve problems that machines can find patterns without explicitly programming them to do so. But do you have a team building an ML model? How far are they from the IT team? Do they know how to deploy and serve that? Testing? And sharing what they have done? That's where a devops mindset comes in: reduce the batch size, continuous-everything and a culture of failure/experimentation are vital for your data team! In the end, I will show how the workflow of a data scientist can be on the real life with a live demo! ➡️Talk #2: AI and Machine Learning for the connected home - Rik van der Vlist Quby is a leading company offering data driven home services technology across European markets, known for creating the in-home display and smart thermostat Toon. We use AI and machine learning to generate actionable insights for our end users. Using the data we collect via our IoT devices we have introduced multiple data driven services, including an energy waste checker and a boiler monitoring service. In this talk, Rik will describe how AI and machine learning are implemented on the Toon platform, and will show multiple AI use cases relating to the connected home. We’ll take a look at how both physics-based and deep learning algorithms are used to detect household appliances from electricity meter data using Apache Spark. Furthermore, we will look at the possibilities for AI use cases for smart thermostats, and look in at the challenges faced when scaling up AI services to hundreds of thousands of end users. Please, remember to sign up here: bit.ly/Meetup-Ams-AI

Real-life Machine Learning systems: fashion retail & improving a ML workflow

We introduce a couple of cutting-edge Machine Learning talks in this meetup! Come learn how to train your model building real-life machine learning systems! Event schedule: 18:00 Doors open 18:15 Pizza and beer 🍕🍻(Big thank you to de Bijenkorf for hosting us!) 18:45 Intro by Codemotion 19:00 Talk #1: Outfit Recommendations: How to use existing data/images to create new outfits, by Jelle Rolf (Data analyst e-commerce at de Bijenkorf https://www.linkedin.com/in/jelle-rolf-949156b0/) and Dennis van der Voorn (Data analyst at de Bijenkorf https://www.linkedin.com/in/dennis-van-der-voorn-6730bb94/) 19:45 Talk #2: Improving Machine Learning Workflow - Training, Packaging and Serving your Models, by Wilder Rodrigues (Artificial Intelligence Engineer at Aigent https://www.linkedin.com/in/wilderrodrigues/) 20:30 Drinks and networking ➡️Talk #1: Outfit Recommendations: How to use existing data/images to create new outfits Gaining useful insights into unstructured data, and specifically images, is becoming increasingly important in a large number of markets, including E-commerce. At the same time the field of computer vision is an extremely vast area with a steep learning curve to actually become proficient in. In this talk we will elaborate on how we use image similarity at de Bijenkorf. First, we will take you through the steps we took to set up an Image Similarity algorithm that is useful for fashion retail. We take you through some methods we tried and present our findings about these methods. In the second part we will show you how we use images of outfits that are already available, to generate new combinations of products. We will go through how to prepare the data from the images, the methods we used and the advantages & disadvantages of the steps we took. ➡️Talk #2: Improving Machine Learning Workflow - Training, Packaging and Serving your Models As machine learning practitioners, we know how hard it can be to have a smooth process around training and serving production-ready models. Processing the data, saving all the relevant artefacts to make experiments reproducible, packaging and serving the models; all these individual components can be a nightmare to implement and manage. MLflow - an amazing new platform for managing the ML life cycle - comes to the rescue. In this talk, we will present a Docker powered infrastructure that combines MLflow, JupyterHub and Minio (S3 compliant storage) that aims to solve the above problems and improve your machine learning workflow. In addition, we will present a CI-CD pipeline which is responsible for fetching production-ready models from storage, and building and publishing Docker images that serve these models in production. With this in place, tasks like experimenting, releasing and serving models become more straightforward and less manual. We will explore how this infrastructure can speed up our work, make it less error prone, and help us manage all ML related artefacts better. We will start the talk by presenting the infrastructure and its components and how they address practitioners’ pain points. Next, we will show how our solution helps to train models in a structured way. And lastly, we will demonstrate how to automate packaging and serving of the models prior to deployment. Thanks to De Bijenkorf for having us!

Past events (20)

The Path to Becoming a Tech Leader

42workspace - Tech Cowork Space Rotterdam

Photos (75)