Skip to content

AWS Workshop: TensorFlow in SageMaker! ๐Ÿ”ถ๐Ÿ‘ฉโ€๐Ÿซ

Photo of Shay Palachy Affek
Hosted By
Shay Palachy A.
AWS Workshop: TensorFlow in SageMaker! ๐Ÿ”ถ๐Ÿ‘ฉโ€๐Ÿซ

Details

This awesome ๐˜›๐˜ฆ๐˜ฏ๐˜ด๐˜ฐ๐˜ณ๐˜๐˜ญ๐˜ฐ๐˜ธ ๐˜ช๐˜ฏ ๐˜š๐˜ข๐˜จ๐˜ฆ๐˜”๐˜ข๐˜ฌ๐˜ฆ๐˜ณ hands-on workshop is hosted by AWS, conducted by an Amazon specialist ML solutions architect and with mentoring by Amazon solution architects! ๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—น๐—ถ๐—ป๐—ธ ๐—ฏ๐—ฒ๐—น๐—ผ๐˜„ ๐—ถ๐˜€ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฏ๐˜‚๐˜ ๐—บ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜๐—ผ๐—ฟ๐˜†!

๐—ก๐—ผ๐˜๐—ฒ: This is a hands-on session. Bring your own laptop and work with us! Basic Python and ML knowledge is required.

๐—”๐—ด๐—ฒ๐—ป๐—ฑ๐—ฎ:
๐Ÿ• 17:00 - 17:20 - Gathering, registration, snacks & mingling
๐Ÿ”ถ 17:20 - 20:00 - Workshop! (๐˜๐˜ฆ๐˜ฃ๐˜ณ๐˜ฆ๐˜ธ)

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: https://floor28.co.il/event/100d97c9-f264-4b05-9e49-da687316ee5c
๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—น๐—ถ๐—ป๐—ธ ๐—ถ๐˜€ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฏ๐˜‚๐˜ ๐—บ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜๐—ผ๐—ฟ๐˜†!

๐—”๐—ฏ๐˜€๐˜๐—ฟ๐—ฎ๐—ฐ๐˜: TensorFlow/Keras enables developers to quickly and easily get started with deep learning in the cloud. You can get started on AWS with a fully-managed TensorFlow/Keras experience with Amazon SageMaker, a platform to build, train, and deploy machine learning models at scale.

You can use Amazon SageMaker to train and deploy a model using custom TensorFlow code. The Amazon SageMaker Python SDK TensorFlow estimators and models and the Amazon SageMaker open-source TensorFlow containers make writing a TensorFlow script and running it in Amazon SageMaker easier.

In this workshop you will port a working TensorFlow script to run on SageMaker and utilize some of the feature available for TensorFlow in SageMaker.

We will go over:

  1. Porting a TensorFlow script to run in SageMaker using SageMaker script mode.
  2. Monitoring your training job using TensorBoard and Amazon CloudWatch metrics.
  3. Optimizing your training job using SageMaker pipemode input.
  4. Running a distributed training job.
  5. Deploying your trained model on Amazon SageMaker.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: https://floor28.co.il/event/100d97c9-f264-4b05-9e49-da687316ee5c
๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—น๐—ถ๐—ป๐—ธ ๐—ถ๐˜€ ๐—ณ๐—ฟ๐—ฒ๐—ฒ ๐—ฏ๐˜‚๐˜ ๐—บ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜๐—ผ๐—ฟ๐˜†!

๐—ก๐—ผ๐˜๐—ฒ: This is a hands-on session. Bring your own laptop and work with us! Basic Python and ML knowledge is required.

Photo of DataHack - Data Science, Machine Learning & Statistics group
DataHack - Data Science, Machine Learning & Statistics
See more events