Next Meetup

Deploying Nvidia GPU Accelerated Tensorflow -- Free Workshop
We will be discussing how to compile and install from source a GPU accelerated instance of Tensorflow in Ubuntu 18.04 LTS. Tensorflow is a deep-learning framework developed by Google. It has become an industry standard tool for both deep-learning research and production grade application development. Ubuntu[masked] LTS (Bionic Beaver) is the latest long term support variant of Ubuntu linux. It will be supported for 5 years until April 2023. It is one of the favorite choice of linux distribution for deploying scalable deep-learning applications, both in research and in production settings. Read more about this dsitribution here: This session will cover the basics of Nvidia CUDA and use CUDA to accelerate Tensorflow applications. Nvidia CUDA is a parallel computing platform and programming model for general computing on graphical processing units (GPUs) from Nvidia. CUDA handles the GPU acceleration of deep-learning tasks using Tensorflow. We will also discuss Nvidia CUDA Deep Neural Network library (cuDNN), a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the Nvidia Deep Learning SDK. Another key piece of technology for GPU acceleration using CUDA is the NVIDIA Collective Communications Library (NCCL), which implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs. NCCL provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter, that are optimized to achieve high bandwidth over PCIe and NVLink high-speed interconnect. Developers of deep learning frameworks and HPC applications can rely on NCCL’s highly optimized, MPI compatible and topology aware routines, to take full advantage of all available GPUs within and across multiple nodes. This allows them to focus on developing new algorithms and software capabilities, rather than performance tuning low-level communication collectives. Tensorflow uses NCCL to deliver near-linear scaling of deep learning training on multi-GPU systems. This is a free public event. But, access to the GPU powered virtual machines (VMs) for hands-on deployments are only available for participants who purchased a ticket. Last minute purchase of tickets may not receive a VM due to allocation bottlenecks. Remember to buy the tickets at-least 48 hours before the event. The tickets are available for purchase here: The goal of this workshop is to learn how to leverage GPU to accelerate applications such as Tensorflow. Please bring a laptop to follow along the content effectively. The content of this session is loosely based on this blog post: Requirements: 1) Basics of shell scripting 2) Basics of python 3 3) Familiarity with tools like nano and screen in linux

Wework Queens Plaza

27-01 Queens Plaza North · Astoria, NY

Upcoming Meetups

Past Meetups (220)

What we're about

Interested in AI? Join our group! This group is dedicated to the application of neuroscience, artificial intelligence, medicine, and computer science towards the further understanding and development of artificial intelligence. We also focus on developing the New York MedTech industry.

The goal is to create a laid back place where the spirit of the coffeehouse culture of the Enlightenment meets the modern hackerspace; where people from different disciplines who wouldn't normally meet can exchange ideas, experiment with hands on systems, and have a good time.

We hope this can be the melting pot of neuroscientists, hackers, programmers, doctors, mathematicians, artists, post docs in any science, bio-staticians, entrepreneurs, and the average person who is interested in learning about advances in artificial intelligence applications in healthcare (and adjacent data intensive fields).

Like our Facebook page:

Join our Facebook group:

Join us on LinkedIn:

Wish to contribute some love and cash? (

Join our Slack channel: (

To join our slack channel:
1. Use the link above and enter your email.
2. Then check your email for Slack confirmation.
3. Confirm your email and voila!

Members (3,021)

Photos (134)

Find us also at