Skip to content

PyData London - 54th Meetup

Photo of
Hosted By
Ramya B.



NOTE: A valid photo ID is required by building security. You MUST use your full real names on your meetup profile, otherwise, you will NOT make it on the guest list!
Tickets are assigned through a lottery draw initially. Waitlist places are assigned manually. We can only admit you if you use your full real names on your meetup profile.
If your RSVP status says "You're going" you will be able to get in. No further confirmation required. You will NOT need to show your RSVP confirmation when signing in.
If you can no longer make it, please unRSVP as soon as you know so we can assign your place to someone on the waiting list.

This event follows the NumFOCUS code of conduct , please familiarise yourself with it before the event. Please get in touch with the organisers with any questions or concerns regarding the code of conduct.


As always, there'll be free food & drinks, generously provided by our host, AHL.
We are issuing tickets via a lottery - if you want to be in with a chance of a place - sign up for the waitlist! The lottery will be run approx 1 week before the meetup, and we will re-run the lottery to fill any spaces that free up or use the waitlist towards the time of the event.

Main Talks

Felix Laumann
MedSpace - Medical Image Analysis with Bayesian Deep Learning
Bayesian deep learning has the advantage of incorporating a measure for uncertainty naturally. This is especially in the field of medical image analysis indispensable where human health decisions with potential vast consequences are made on a daily base. Given the ageing population and the scarcity of health service resources, doctors often need to make these decisions without consulting a second opinion. Bayesian deep learning can be this precious second opinion in such decision-making processes by favouring a decision, but also stating how certain the network is about this decision. We discuss three different methods (Bayes by Backprop, Dropout, Flipout) how Bayesian deep learning can be implemented, validate their performances on different medical image data sets, and discuss the advantages and disadvantages of each.

Gatis Seja
Data Engineering Principles - Build frameworks not pipelines
Data pipelines are necessary for the flow of information from its source to its consumers, typically data scientists, analysts and software developers. Managing data flow from many sources is a complex task where the maintenance cost limits scale of being able to build a large reliable data warehouse. This presentation proposes a number of applied data engineering principles that can be used to build robust easily manageable data pipelines and data products. Examples will be shown using Python on AWS.

Lightning Talks

Kannappan Sirchabesan Slack slash app using Google Cloud Functions Google Cloud Functions is a lightweight server less way to create single-purpose, stand-alone functions that respond to events. It can be used to build event-driven microservices. This lightning talk will demonstrate the ease of developing Cloud Functions in Python by building a Slack slash app that makes use of Google Knowledge Graph Search API to retrieve quick knowledge snippets of real-world entities like people, places from within Slack.

Florian Dejax
Feeding a tensorflow model from a parquet file (Code demo).


Doors open at 6.30pm (get there early as you have to sign-in via AHL's security), talks start at 7 pm, drinks from 9 pm in the bar. We normally have >200 folks in the room so there's plenty of people to discuss data science questions with!
Please unRSVP in good time if you realise you can't make it. We're limited by building security on the number of attendees, so please free up your place for your fellow community members!
Follow @pydatalondon ( for updates and early announcements.

1, Angel Lane, · London
21 spots left