Skip to content

Details

AGENDA:
Pre-register on Zoom:
6:45 Connection to Zoom chat with speaker and organizers
7:00 SFbayACM intro, upcoming events, introduce the speaker
7:10 presentation starts (~90 min with Q&A)

YouTube Live: https://youtu.be/Fc-xuUBs5MY

## Abstract

Modern machine learning (ML) workloads, such as deep learning and large-scale model training, are compute-intensive and require distributed execution. Ray is an open-source, distributed framework from U.C. Berkeley’s RISELab that easily scales Python applications and ML workloads from a laptop to a cluster, with an emphasis on the unique performance challenges of ML/AI systems. It is now used in many production deployments.

This talk will cover Ray’s overview, architecture, core concepts, and primitives, such as remote Tasks and Actors; briefly discuss Ray native libraries (Ray Tune, Ray Train, Ray Serve, Ray Datasets, RLlib); and Ray’s growing ecosystem.

Through a demo using XGBoost for classification, we will demonstrate how you can scale training, hyperparameter tuning, and inference—from a single node to a cluster, with tangible performance difference when using Ray.

The takeaways from this talk are :

  • Learn Ray architecture, core concepts, and Ray primitives and patterns
  • Why Distributed computing will be the norm not an exception
  • How to scale your ML workloads with Ray libraries:
  • Training on a single node vs. Ray cluster, using XGBoost with/without Ray
  • Hyperparameter search and tuning, using XGBoost with Ray Tune
  • Inferencing at scale, using XGBoost with/without Ray

# Bio

Jules S. Damji is a lead developer advocate at Anyscale Inc, an MLflow contributor, and co-author of Learning Spark, 2nd Edition. He is a hands-on developer with over 25 years of experience and has worked at leading companies, such as Sun Microsystems, Netscape, @Home, Opsware/LoudCloud, VeriSign, ProQuest, Hortonworks, and Databricks, building large-scale distributed systems. He holds a B.Sc and M.Sc in computer science (from Oregon State University and Cal State, Chico respectively), and an MA in political advocacy and communication (from Johns Hopkins University).

AI Algorithms
Deep Learning
New Technology
Software Development

Members are also interested in