What we're about

R enthusiasts and users, data scientists and statisticians of all levels from the Vienna, Austria area.

For further details check out the vienna.org (http://www.viennar.org) website and the ViennaR Meetup Rules (https://www.meetup.com/ViennaR/pages/ViennaR_Meetup_Rules/).

Upcoming events (2)

BrightonR / ViennaR - Jan 22 Meetup [NLP/Text analysis]

Online event

Sharing the Brighton R's Meetup Group details with you ...

BrightonR is back with their first online meetup of 2022!
Joined by guest speaker Eduardo Contreras Cortes - a regular on the R circuit for his talk 'The Data Science behind public speaking'.

The talk will take us through Eduardo's analysis on 2,500+ TED talks using text analytics and machine learning in R to find the factors that make some talks more popular than others. The ML model has also been successfully deployed online as a free tool to provide recommendations for new presentations - and can be found on his website www.speakthedata.com

Oslo useR / ViennaR - Cluster-Robust Standard Errors in R with {clubSandwich}

Link to original event (organizer Meetup page)
>> https://www.meetup.com/Oslo-useR-Group/events/283050203/

Cluster-robust variance estimation methods (also known as sandwich estimators, linearization estimators, or simply "clustered" standard errors) are a standard inferential tool in many different areas of applied statistics. They are appealing because they provide a means to do inference for regression models without relying on strong assumptions about the distribution or dependence structure of errors. However, standard cluster-robust variance estimators are based on large-sample approximations and can perform poorly when based on a small number of clusters.

In this talk, James will provide an overview of some refinements to cluster-robust variance estimators, as implemented in his package {clubSandwich} (https://CRAN.R-project.org/package=clubSandwich), that perform well even with a limited number of clusters.

He will provide a brief, high-level sketch of the theory behind the refined methods, discuss the practical rationale for using the methods, and demonstrate their application with the clubSandwich package, focusing in particular on linear mixed models. In addition to linear mixed models, the methods are available for a range of regression models and estimation methods, including ordinary least squares, weighted least squares, two-stage least squares, generalized linear models, and meta-regression models.

James Pustejovsky is a statistician and Associate Professor in the School of Education at the University of Wisconsin-Madison. His research involves developing statistical methods for problems in social science research, with a focus on methods for meta-analysis. He completed his Ph.D. in statistics from Northwestern University in 2013. His homepage is https://www.jepusto.com/

The event will be recorded and posted on our YouTube channel https://www.youtube.com/c/UseROslo

Photos (69)