How Large Language Models Actually Work β From Transformers to RAG & Fine-Tuning
Details
### π Duration: 2 Hours
Target Audience:
- Intermediate to advanced devs, ML engineers, backend/infra pros
- Curious professionals (2β10 years exp) whoβve heard of ChatGPT, but want to understand how it really works
***
### π§ Agenda Breakdown:
| Time | Segment |
| ---- | ------- |
| 0β10 min | π₯ Opening: βWhy LLMs Are Eating the Worldβ β Real use cases |
| 10β30 min | π§± LLM Core Design: Transformer, Tokens, Training at Scale |
| 30β55 min | π From GPT-2 to GPT-4: Scaling Laws, Attention, MoE |
| 55β75 min | π How LLMs Learn to Chat: RLHF, Prompt Engineering, Safety |
| 75β95 min | π§© Demo: Build a RAG App (LLM + Custom Data) using LangChain/Haystack |
| 95β110 min | βοΈ Fine-Tuning + LoRA: Customize Open LLMs with 1 GPU |
| 110β120 min | Q&A + Show top tools & free resources (like HuggingFace, Ollama, Mistral) |
***
### π― Key Concepts Covered:
- Tokenization (BPE, embeddings)
- Transformer architecture (multi-head attention, LayerNorm)
- What happens during pretraining (auto-regression, dataset size)
- RLHF & human feedback alignment
- LoRA vs full fine-tuning (real-world tips)
- Vector DBs + LangChain for building real AI apps
- Prompt Engineering vs RAG vs Fine-tuning β when to use what
***
### π» Optional Demos (Boosts Engagement)
- Chat with your own PDF using RAG
- LoRA fine-tune Mistral-7B on custom support data
- Prompt Injection attack β and defense
Join Zoom Meeting
[https://us02web.zoom.us/j/83139818157?pwd=TajnuQ9a0Zt9MK2yhEQOx3PrthWMM8.1](https://www.google.com/url?q=https://us02web.zoom.us/j/83139818157?pwd%3DTajnuQ9a0Zt9MK2yhEQOx3PrthWMM8.1&sa=D&source=calendar&usd=2&usg=AOvVaw2izW161cfkLboNK2GBcsjc)
Meeting ID: 831 3981 8157
Passcode: 125512