Skip to content

Details

Hear talks from experts on the latest topics in AI, ML, and computer vision on November 13.

Date and Location

Nov 13, 2025
9 AM Pacific
Online. Register for the Zoom!

Copy, Paste, Customize! The Template Approach to AI Engineering

Most AI implementations fail because teams treat prompt engineering as ad-hoc experimentation rather than systematic software engineering, leading to unreliable systems that don't scale beyond proof-of-concepts. This talk demonstrates engineering practices that enable reliable AI deployment through standardized prompt templates, systematic validation frameworks, and production observability.

Drawing from experience developing fillable prompt templates currently being validated in production environments processing thousands of submissions, I'll share how Infrastructure as Code principles apply to LLM workflows, why evaluation metrics like BLEU scores are critical for production reliability, and how systematic failure analysis prevents costly deployment issues. Attendees will walk away with understanding of practical frameworks for improving AI system reliability and specific strategies for building more consistent, scalable AI implementations.

About the Speaker

Jeanne McClure is a postdoctoral scholar at NC State's Data Science and AI Academy with expertise in systematic AI implementation and validation. Her research transforms experimental AI tools into reliable production systems through standardized prompt templates, rigorous testing frameworks, and systematic failure analysis. She holds a PhD in Learning, Design and Technology with additional graduate work in data science.

Multimodality with Biases: Understand and Evaluate VLMs for Autonomous Driving with FiftyOne

Do your VLMs really see danger? With FiftyOne, I’ll show you how to understand and evaluate vision-language models for autonomous driving — making risk and bias visible in seconds. We’ll compare models on the same scenes, reveal failures and edge cases, and you’ll see a simple dashboard to decide which data to curate and what to adjust. You’ll leave with a clear, practical, and replicable method to raise the bar for safety.

About the Speaker

Paula Ramos has a PhD in Computer Vision and Machine Learning, with more than 20 years of experience in the technological field. She has been developing novel integrated engineering technologies, mainly in Computer Vision, robotics, and Machine Learning applied to agriculture, since the early 2000s in Colombia.

The Heart of Innovation: Women, AI, and the Future of Healthcare

This session explores how Artificial Intelligence is transforming healthcare by enhancing diagnosis, treatment, and patient outcomes. It highlights the importance of diverse and female perspectives in shaping AI solutions that are ethical, empathetic, and human-centered. We will discuss key applications, current challenges, and the future potential of AI in medicine. It’s a forward-looking conversation about how innovation can build a healthier world.

About the Speaker

Karen Sanchez is a Postdoctoral Researcher at the Center of Excellence for Generative AI at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Her research focuses on AI for Science, spanning computer vision, video understanding, and privacy-preserving machine learning. She is also an active advocate for diversity and outreach in AI, contributing to global initiatives that connect researchers and amplify underrepresented voices in technology.

Language Diffusion Models

Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs). Challenge this notion by introducing LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning (SFT) paradigm. LLaDA models distributions through a forward data masking process and a reverse process, parameterized by a vanilla Transformer to predict masked tokens.

Optimizing a likelihood bound provides a principled generative approach for probabilistic inference. Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming self-constructed ARM baselines. Remarkably, LLaDA 8B is competitive with strong LLMs like LLaMA3 8B in in-context learning and, after SFT, exhibits impressive instruction-following abilities in case studies such as multi-turn dialogue.

About the Speaker

Jayita Bhattacharyya is an AI/ML Nerd with a blend of technical speaking & hackathon wizardry! Applying tech to solve real-world problems. The work focus these days is on generative AI. Helping software teams incorporate AI into transforming software engineering.

Artificial Intelligence
Computer Vision
Machine Learning
Data Science
Open Source

Members are also interested in