Skip to content

Details

Join our virtual meetup to hear talks from experts on cutting-edge topics across Visual AI for Physical AI use cases.

Date, Time and Location

Dec 11, 2025
9:00-11:00 AM Pacific
Online. Register for the Zoom!

From Data to Open-World Autonomous Driving

Data is key for advances in machine learning, including mobile applications like robots and autonomous cars. To ensure reliable operation, occurring scenarios must be reflected by the underlying dataset. Since the open-world environments can contain unknown scenarios and novel objects, active learning from online data collection and handling of unknowns is required. In this talk we discuss different approach to address this real world requirements.

About the Speaker

Sebastian Schmidt is a PhD student at the Data Analytics and Machine Learning group at TU Munich and part of an Industrial PhD Program with the BMW research group. His work is mainly focused on Open-world active learning and perception for autonomous vehicles.

From Raw Sensor Data to Reliable Datasets: Physical AI in Practice

Modern mobility systems rely on massive, high-quality multimodal datasets — yet real-world data is messy. Misaligned sensors, inconsistent metadata, and uneven scenario coverage can slow development and lead to costly model failures. The Physical AI Workbench, built in collaboration between Voxel51 and NVIDIA, provides an automated and scalable pipeline for auditing, reconstructing, and enriching autonomous driving datasets.

In this talk, we’ll show how FiftyOne serves as the central interface for inspecting and validating sensor alignment, scene structure, and scenario diversity, while NVIDIA Neural Reconstruction (NuRec) enables physics-aware reconstruction directly from real-world captures. We’ll highlight how these capabilities support automated dataset quality checks, reduce manual review overhead, and streamline the creation of richer datasets for model training and evaluation.

Attendees will gain insight into how Physical AI workflows help mobility teams scale, improve dataset reliability, and accelerate iteration from data capture to model deployment — without rewriting their infrastructure.

About the Speaker

Daniel Gural leads technical partnerships at Voxel51, where he’s building the Physical AI Workbench, a platform that connects real-world sensor data with realistic simulation to help engineers better understand, validate, and improve their perception systems. With a background in developer relations and computer vision engineering,

Relevance of Classical Algorithms in Modern Autonomous Driving Architectures

While modern autonomous driving systems increasingly rely on machine learning and deep neural networks, classical algorithms continue to play a foundational role in ensuring reliability, interpretability, and real-time performance. Techniques such as Kalman filtering, A* path planning, PID control, and SLAM remain integral to perception, localization, and decision-making modules. Their deterministic nature and lower computational overhead make them especially valuable in safety-critical scenarios and resource-constrained environments. This talk explores the enduring relevance of classical algorithms, their integration with learning-based methods, and their evolving scope in the context of next-generation autonomous vehicle architectures.

Prajwal Chinthoju is an Autonomous Driving Feature Development Engineer with a strong foundation in systems engineering, optimization, and intelligent mobility. I specialize in integrating classical algorithms with modern AI techniques to enhance perception, planning, and control in autonomous vehicle platforms.

Artificial Intelligence
Computer Vision
Machine Learning
Data Science
Open Source

Sponsors

Sponsor logo
StrongLoop
An IBM company helps build node.js & APIs made for cloud.

Members are also interested in