Convolutional Methods for NLP; Improving Fashion Discovery


Details
Matti Lyra will be our host for the evening, as our usual hosts are all away. Thanks Matti!
Speaker 1: Tal Perry
Abstract While RNNs have proven themselves beyond doubt in NLP, training them can be painfully slow due their sequential nature. In this talk we'll leverage the inherent parallelism of constitutional architectures and explore their applications to NLP. We'll focus on capturing multi time scale dependencies while maximizing gradient flow in our network and conclude by investigating "up sampling" techniques for text.
Description/ tl;dr RNNS work great for text but convolutions can do it faster.
Any part of a sentence can influence the semantics of a word. For that reason we want our network to see the entire input at onceGetting that big a receptive can make gradients vanish and our networks failWe can solve the vanishing gradient problem with DenseNets or Dilated ConvolutionsSometimes we need to generate text. We can use “deconvolutions” to generate arbitrarily long outputs.
Bio: Tal Perry is an entrepreneur and data scientist. Tal worked at Citi applying deep learning methodologies to various NLP tasks within the bank. Previously Tal was CTO of Superfly a provider of alternative data to the financial industry as well as founder of an algorithmic trading fund. Tal holds a B.Sc in mathematics from Tel Aviv University.
Speaker 2: Pedro Silva
Title: Improving fashion discovery with multimodal representation learning
Abstract: This talk will cover a multimodal learning to rank model that combines traditional ecommerce search engine features with visual semantic features extracted from a product’s image. By using multimodal representations and effectively capturing fine-grained clothing style from images, we’ll show that ranking quality is significantly improved.The talk will detail the methods used and lessons learned from training these models.
Bio: Pedro is a co-founder at Cerebel, a Berlin-based startup developing visual and natural language search technology for fashion.
Lightning talks
Andreas Spechtler (5 min) will discuss scholarships to AI/ML startups for Silicon Castles Academy. It offers expert courses by academic & industry leaders, and also a great perspective on meeting investors from global funds. Application form (https://docs.google.com/forms/d/e/1FAIpQLSe7f7LgHQ17YGyb4GtFPVDLrmqsX4C5MWQxxLoj87d-nKR9KQ/viewform).

Convolutional Methods for NLP; Improving Fashion Discovery