Confluent Engineering Presents: Introducing Kafka Streams


Details
Speaker: Jeremy Custenborder, System Engineer, Confluent
Abstract: Modern businesses have data at their core, and this data is changing continuously. How can we harness this torrent of information in real-time? The answer is stream processing, and the technology that has since become the core platform for streaming data is Apache Kafka. Among the thousands of companies that use Kafka to transform and reshape their industries are the likes of Netflix, Uber, PayPal, and AirBnB, but also established players such as Goldman Sachs, Cisco, and Oracle.
Unfortunately, today’s common architectures for real-time data processing at scale suffer from complexity: there are many technologies that need to be stitched and operated together, and each individual technology is often complex by itself. This has led to a strong discrepancy between how we, as engineers, would like to work vs. how we actually end up working in practice.
In this session we talk about how Apache Kafka helps you to radically simplify your data processing architectures. We cover how you can now build normal applications to serve your real-time processing needs — rather than building clusters or similar special-purpose infrastructure — and still benefit from properties such as high scalability, distributed computing, and fault-tolerance, which are typically associated exclusively with cluster technologies. Notably, we introduce Kafka’s Streams API, its abstractions for streams and tables, and its recently introduced Interactive Queries functionality. As we will see, Kafka makes such architectures equally viable for small, medium, and large scale use cases.
Speaker bio: Jeremy Custenborder is a Systems Engineer for Confluent, the company driving commercial Kafka support. He has consulted with big data systems since 2010 for various companies across the US. He currently lives in Austin, TX where he hides in the air conditioning for a large portion of the year.

Confluent Engineering Presents: Introducing Kafka Streams