Is Predictive Coding a panacea for both AI and Neuroscience in general?


Details
From SEP: Connectionism.
- Predictive Coding Models of Cognition
The predictive coding (PC) paradigm has attracted a lot of attention. There is ample evidence that PC models capture essential details of visual function in the mammalian brain (Rao & Ballard 1999; Huang & Rao 2011). For example, when trained on typical visual input, PC models spontaneously develop functional areas for edge, orientation and motion detection known to exist in visual cortex. This work also raises the interesting point that the visual architecture may develop in response to the statistics of the scenes being encountered, so that organisms in different environments have visual systems specially tuned to their needs.
It must be admitted that there is still no convincing evidence that the essential features of PC models are directly implemented as anatomical structures in the brain. Although it is conjectured that superficial pyramidal cells may transmit prediction error, and deep pyramidal cells predictions, we do not know that that is how they actually function. On the other hand, PC models do appear more neurally plausible than backpropagation architectures, for there is no need for a separate process of training on an externally provided set of training samples. Instead, predictions replace the role of the training set, so that learning and interacting with the environment are two sides of a unified unsupervised process.
PC models also show promise for explaining higher-level cognitive phenomena. An often-cited example is binocular rivalry. When presented with entirely different images in two eyes, humans report an oscillation between the two images as each in turn comes into “focus”. The PC explanation is that the system succeeds in eliminating error by predicting the scene for one eye, but only to increase the error for the other eye. So the system is unstable, “hunting” from one prediction to the other. Predictive coding also has a natural explanation for why we are unaware of our blind spot, for the lack of input in that area amounts to a report of no error, with the result that one perceives “more of the same”.
PC accounts of attention have also been championed. For example, Hohwy (2012) notes that realistic PC models, which must tolerate noisy inputs, need to include parameters that track the desired precision to be used in reporting error. So PC models need to make predictions of the error precision relevant for a given situation. Hohwy explores the idea that mechanisms for optimizing precision expectations map onto those that account for attention, and argues that attentional phenomena such as change blindness can be explained within the PC paradigm.
Predictive coding has interesting implications for themes in the philosophy of cognitive science. By integrating the processes of top-down prediction with bottom-up error detection, the PC account of perception views it as intrinsically theory-laden. Deployment of the conceptual categorization of the world embodied in higher levels of the net is essential to the very process of gathering data about the world. This underscores, as well, tight linkages between belief, imaginative abilities, and perception (Grush 2004). The PC paradigm also tends to support situated or embodied conceptions of cognition, for it views action as a dynamic interaction between the organism’s effects on the environment, its predictions concerning those effects (its plans), and its continual monitoring of error, which provides feedback to help ensure success.
It is too early to evaluate the importance and scope of PC models in accounting for the various aspects of cognition. Providing a unified theory of brain function in general is, after all, an impossibly high standard. Clark’s target article (2013) provides a useful forum for airing complaints against PC models and some possible responses.

Is Predictive Coding a panacea for both AI and Neuroscience in general?