Skip to content

Apache Kafka and The Rise of Real-Time - Neha Narkhede

Photo of Hervé Riviere
Hosted By
Hervé R. and Florian H.
Apache Kafka and The Rise of Real-Time - Neha Narkhede

Details

Nous avons le plaisir de recevoir Neha Narkhede CTO de Confluent pour le meet-up d'avril !

Premier talk :

18h30 :Apache Kafka and The Rise of Real-Time - Neha Narkhede

What happens if you take everything that is happening in your company—every click, every database change, every application log—and make it all available as a real-time stream of well-structured data?

Neha will discuss the experience at LinkedIn and elsewhere moving from batch-oriented ETL to real-time streams using Apache Kafka, including how the design and implementation of Kafka was driven by the goal of acting as a real-time platform for event data as well as some of the challenges of scaling Kafka to hundreds of billions of events per day at Linkedin, supporting thousands of engineers, applications and data systems in a self-service fashion.

She will describe how real-time streams can become the source of ETL into Hadoop or a relational data warehouse, how real-time data can supplement the role of batch-oriented analytics in Hadoop or a traditional data warehouse, and how applications and stream processing systems such as Storm, Spark, or Samza can make use of these feeds for sophisticated real-time data processing as events occur.

Bio:Neha Narkhede is co-founder and CTO at Confluent, a company backing the popular Apache Kafka messaging system. Prior to founding Confluent, Neha led streams infrastructure at LinkedIn, where she was responsible for LinkedIn’s streaming infrastructure built on top of Apache Kafka and Apache Samza. She is one of the initial authors of Apache Kafka and a committer and PMC member on the project.

Second talk :

19h30 : Pourquoi Kafka Streams change le Game ! - Fred Cecilia

Kafka est devenu incontournable dans le milieu du Big Data. Cependant son utilisation restait jusque-là assez complexe, particulièrement lorsqu’on l’utilisait dans un contexte micro-service à faible latence.

La bibliothèque "Kafka Streams" change complètement la donne. Pas besoin d’infrastructure complexe, les mots d’ordre sont «Simplicité» et «Efficacité».

À travers quelques exemples je vous présenterais les fonctionnalités phares ainsi que quelques cas d’usage où son utilisation est extrêmement pertinente.

Bio : Je suis Fred CECILIA, consultant freelance. Développeur passionné, je m’intéresse particulièrement au langage Scala et à son écosystème. Actuellement, j'interviens principalement sur des missions Big Data, mais je garde un regard curieux sur tout ce qui possède une API :) Je suis également speaker et un des organisateurs du Paris Scala user Group.

20h00 : Networking

Photo of Paris Apache Kafka® Meetup group
Paris Apache Kafka® Meetup
See more events