Skip to content

Details

Announcing second virtual meetup of the UK tinyML group on November 3rd, 2020

IMPORTANT: Please register here
https://us02web.zoom.us/webinar/register/9516027344784/WN_TZk0OMQnRT24UEDvxWIcqw

Once registered, you will receive a link and dial in information to Zoom teleconference by email, that you can also add to your calendar.

tinyML Talks Local UK meetup
8:00 AM - 9:00 AM Pacific Daylight Time (PDT)
Urmish Thakker, Deep Learning Researcher, SambaNova Systems
"A technique for extreme compression of LSTM models using sparse structured additive matrices"

Structured matrices, such as those derived from Kronecker products (KP), are effective at compressing neural networks, but can lead to unacceptable accuracy loss when applied to large models. In this paper, we propose the notion of doping -addition of an extremely sparse matrix to a structured matrix. Doping facilitates additional degrees of freedom for a small number of parameters, allowing them to independently diverge from the fixed structure. To train LSTMs with doped structured matrices, we introduce the additional parameter matrix while slowly annealing its sparsity level. However, we find that performance degrades as we slowly sparsify the doping matrix, due to co-matrix adaptation(CMA) between the structured and the sparse matrices. We address this overdependence on the sparse matrix using a co-matrix dropout regularization (CMR)scheme. We provide empirical evidence to show that doping, CMA and CMR are concepts generally applicable to multiple structured matrices (Kronecker Product, LMF, Hybrid Matrix Decomposition). Additionally, results with doped kronecker product matrices demonstrate state-of-the-art accuracy at large compression factors (10 − 25x) across 4 natural language processing applications with minor loss in accuracy. Doped KP compression technique outperforms previous state-of-the-art compression results by achieving 1.3−2.4xhigher compression factor at a similar accuracy, while also beating strong alternatives like pruning and low-rank methods by a large margin (8% or more).Additionally, we show that doped KP can be deployed on commodity hardware using the current software stack and achieve 2.5 − 5.5x inference run-time speed-upover baseline.

Urmish is a Deep Learning Researcher at SambaNova Systems. Before joining SambaNova, he worked with Arm Research, AMD, Texas Instruments and Broadcom. His research has primarily focused on the efficient execution of neural networks on resource-constrained devices. Specifically, he has worked on model quantization, pruning, structured matrices and low-rank decomposition. His work has led to patents, publications and contributions to various products across multiple companies. Urmish completed his Master's in Computer Science from UW Madison in US and Bachelor's from BITS Pilani in India.

We encourage you to register earlier since on-line broadcast capacity may be limited.

Note: tinyML Talks slides and videos will be available on the tinyML website and tinyML YouTube Channel afterwards, for those who missed the live session. Please take a moment and subscribe to the YouTube channel today: https://www.youtube.com/tinyML

Members are also interested in