DATE CHANGE: Interactive Visualization + Leveraging Spark in a Hybrid OLTP/OLAP


Details
All - Unfortunately with the weather conditions and resulting travel issues (flights for our speakers have been canceled), we have decided to move this event to Feb 10th. Sorry for any inconvenience but we hope to see you all then! Please update your RSVPs accordingly. -d
~~~~~~~~~~~~~~~~
Please see talk abstracts below
Interactive Visualization of Streaming Data, Powered by Spark.
Much of the discussion on real-time data today focuses on the machine processing of that data. But helping humans visualize real-time streams is just as important. Visualizing real-time data introduces new UX and usability challenges for any developer embedding analytics into applications, especially when the target end users are business users and not data scientists. Self-service, interactive, subsecond response time to ad hoc queries -- these are the new UX requirements for any enterprise visualizing real-time data. Streaming data also lends itself to new paradigms of interaction with the stream itself, like being able to pause, rewind and replay a stream. This talk is a case study in how and why Zoomdata built a "Data DVR" capability using Spark and SparkStreaming. Ruhollah Farchtchi, Chief Technologist & VP of Zoomdata (http://www.zoomdata.com/) Labs will describe the required user experience, the overall architecture and the specific use of Spark and Spark Streaming. We will describe the design considerations that led us to choose Spark Streaming over alternatives like Storm. We will show how end users configure the real-time increment and a historical retention window without writing any code themselves. We will also show how pause, rewind, replay is implemented inSpark and how the solution supports both real-time and historical analysis in the same architecture. Attendees will walk away with knowledge of Spark Streaming and how users can interactively work with streaming data. They will develop familiarity with the challenges of a lambda architecture and providing a consistent analytic experience over streaming and historical data."
Leveraging Spark in a Hybrid OLTP/OLAP RDBMS
In this talk, we will discuss how we use Spark as part of a hybrid RDBMS architecture that includes Hadoop and HBase. The optimizer evaluates each query and sends OLTP traffic (including CRUD queries) to HBase and OLAP traffic to Spark. We will focus on the challenges of handling the tradeoffs inherent in an integrated architecture that simultaneously handles real-time and batch traffic. Lessons learned include: - Embedding Spark into a RDBMS - Running Spark on Yarn and isolating OLTP traffic from OLAP traffic - Accelerating the generation of Spark RDDs from HBase - Customizing the Spark UI The lessons learned can also be applied to other hybrid systems, such as Lambda architectures.
John Leach is the CTO and Co-Founder of Splice Machine (http://www.splicemachine.com/). With over 15 years of software experience under his belt, John’s expertise in analytics and BI drives his role as Chief Technology Officer. Prior to Splice Machine, John founded Incite Retail in June 2008 and led the company’s strategy and development efforts. At Incite Retail, he built custom Big Data systems (leveraging HBase and Hadoop) for Fortune 500 companies. Prior to Incite Retail, he ran the business intelligence practice at Blue Martini Software and built strategic partnerships with integration partners. John was a key subject matter expert for Blue Martini Software in many strategic implementations across the world. His focus at Blue Martini was helping clients incorporate decision support knowledge into their current business processes utilizing advanced algorithms and machine learning. John received dual bachelor’s degrees in biomedical and mechanical engineering from Washington University in Saint Louis. Leach currently is the organizer for the Saint Louis Hadoop Users Group and is active in the Washington University Elliot Society.

DATE CHANGE: Interactive Visualization + Leveraging Spark in a Hybrid OLTP/OLAP