Past Meetup

Data Science 101

This Meetup is past

60 people went

Location image of event venue


The deadline to register and pay online is 2 pm the day of the event.


There is a cover charge for this event.

A "YES" RSVP on our meetup site does not confirm your reservation.

Space is limited. Please only RSVP "Yes" if you will be attending.

Take advantage of early responder pricing!

Slots are limited. First come, first served!

First Responders $9 plus Eventbrite fees

Second Responders $12 plus Eventbrite fees

Third Responders $15 plus Eventbrite fees

In order to attend, you must register and pay here:

Please bring your printed ticket to the event.

Or, pay $20 cash at the door.

We've been taught that "data science" is the esoteric domain of PhDs,
but like anything else, it's easy once you understand it. This talk
explains the basics of data science, covering concepts in supervised
learning (including a detailed explanation of decision trees and
random forests) as well as examples of unsupervised learning
algorithms. Far from being a dry and academic topic, data science and machine learning are useful and practical analytical tools. (This talk is intended for a general audience.)

Topics will include:

1) An introduction to supervised learning using the popular decision
tree algorithm

2) The concepts of training and scoring, and the meaning of "real time"
machine learning

3) Model validation using holdout sets

4) Model complexity and overfitting; understanding bias and variance;
using ensembles to reduce variance

5) An overview of unsupervised learning models including clustering,
topic modeling and anomaly detection

and more!


6:30 pm to 7:00 pm Check In, Food, Networking

7:00 pm to 8:30 pm Presentation, Q & A

8:30 pm to 9:00 pm Networking

About the Speaker

David Gerster is Vice President of Data Science at BigML, an organization founded in 2010 "with the mission of making machine learning easy and beautiful for everyone". David's role is to promote the idea that data science is easy by speaking at conferences and teaching workshops. Since joining BigML in July 2013, he has spoken at CERN, Big Data Spain,, DataLead (UC Berkeley), DataBeat (VentureBeat), and more than a dozen other events.

Prior to BigML, David held postions at Groupon and Yahoo. At Groupon, he built an elite data science team that trained the first machine-learned models for mobile deal relevance. At Yahoo, he led the project to collect billions of URL clickstreams in Hadoop and use them to improve Yahoo’s main web search algorithm.

David holds an MBA from the University of California at Berkeley and a bachelor’s degree from Harvard University. ( ).

Event Sponsor:

Panoply is the world’s only smart data warehouse for business intelligence(BI). Built for companies with data needs, Panoply is your data management team in the cloud. Panoply utilizes machine learning and NLP to automate highly diverse data integration, query optimization and elastic data management making it fast and simple to gain actionable insights without the need of IT engineers.

The company, based in San Francisco and Tel Aviv, is privately held and funded by investors such as Intel Capital, 500 Startups, Blumberg Capital, and C5 Capital.