
What we’re about
This is a group for anyone who has ever rigorously studied physics – or has wanted to. Here's why you'd want to join us:
- If you feel like physics is the most interesting and most difficult subject that there is;
- If you're burning with a desire to deeply understand the universe at its smallest and largest scales;
- And if you thrive in an environment of learning through collaboration with people like yourself...
... then you've found the right place!
Join us to participate in lively discussions and learn core material in serious study groups. We offer multiple tracks of study, regularly host special events and talks, and are constantly tweaking the meetup to make it more useful. We also stay in touch between meetings to motivate and help each other continue learning.
Everyone is welcome from every level of experience! Many of us are (re)discovering physics after college (sometimes long after) and it can be easy to feel rusty or underqualified. Don't fall into that false narrative! If you think some of the material in this meetup is too advanced, we want you to join us so that we can help you learn!
Upcoming events
245
•OnlineParticle Physics Advanced Study Group
OnlineCome join us to study particle physics! We meet for two hours every other week to work through the recently released Phenomenology of Particle Physics by André Rubbia. This book devotes equal attention to both theory AND experiment. We'll learn about the modern mathematical and physical frameworks that are used to make predictions about and analyze the results of real physical experiments, including:
- quantum mechanics
- special relativity
- Lagrangian mechanics
- quantum field theory
- QED, QCD, and gauge field theory
- the Standard Model
- math methods in multivariable calculus, group theory, Hilbert spaces, and more
All of this learning will happen within the context of past and present experiments, so we will also be diving into applied topics that include:
- particle accelerators and detectors
- radioactive decay
- deep inelastic scattering
- hadron-hadron collisions
- solar neutrino oscillations
- cosmic rays
- computational physics
This book includes a healthy dose of Python and Mathematica computer code interspersed throughout the text, so anyone interested in computational physics can jump directly into doing analysis and simulation.
Prerequisites: So long as you have taken college calculus and physics at some point in your life, you should be fine. We run several other active study groups that dive further into the topics mentioned here, including quantum field theory, relativity, math methods, and electrodynamics – please join us in some or all of these other meetups! In addition, we will share with you a number of other useful resources that the group offers to help you through any topics you’re struggling with.
BEFORE COMING to the meeting: Please have a copy of the book available to you in some form. If you aren't ready to buy a physical or digital book, you can download a free sample through Amazon/Kindle and see if you like it.
We maintain a live chat server for staying in touch between meetups. Ask us for a link.
This event joins our other existing collaborative study tracks. Please note that this particular meetup series is a highly mathematical meetup for everyone who is serious about learning advanced physics topics at a graduate or advanced undergraduate level. It is not a general discussion group for popular physics topics or sci-fi tangents. For casual physics chat, please attend our regular Discuss Physics & Make Friends event, held every third Wednesday of the month.
6 attendees
•OnlineQuantum Information Theory
OnlineQuantum Information Theory is the study of how information is represented, transmitted, and processed in systems governed by the principles of quantum mechanics. It extends classical information theory to account for quantum phenomena such as superposition, entanglement, and non-locality, enabling tasks like quantum computation, quantum communication, and quantum cryptography. It involves calculating and proving bounds and limits on what is possible and is used as a guide in developing practical schemes.
TIMES:
Weekly on Thursdays from 5-6:30 pm US West Coast Pacific time. May switch to semi-biweekly later in the talks as we get into heavier technical material. Begins Thursday, March 20, 2025.GOAL:
To be able to read and understand textbooks at the level of Watrous and Wilde (below). After the course, the material in Preskill's chapter 10, Quantum Shannon Theory, would be understandable. https://www.preskill.caltech.edu/ph219/chap10_6A_2022.pdfSYLLABUS:
The material will be covered in three parts. We will focus more on solving problems and exercises as we get into the heavier technical material.1. Introduction to information theory. (4-6 weeks)
2. Introduction to quantum information theory. (~16 weeks)
3. Advanced quantum information theory. (~30 weeks)TEXTS:
Introduction to information theory:- T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed. Hoboken, N.J: Wiley-Interscience, 2006.
Introduction to quantum information theory:
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Anniversary edition. Cambridge ; New York: Cambridge University Press, 2011.
Advanced quantum information theory:
- S. Khatri, L. Lami, and M. M. Wilde, Principles of Quantum Communication Theory: A Modern Approach. Latest version: https://markwilde.com/PQCT-khatri-lami-wilde.pdf
- J. Watrous, The Theory of Quantum Information, 1st ed. Cambridge University Press, 2018. doi: 10.1017/9781316848142.
- M. M. Wilde, Quantum Information Theory, 2nd edition. Cambridge: Cambridge University Press, 2017.
SURVEY:
Please complete the following short survey. It gives me an idea of the background of people interested in participating. https://forms.gle/GJk6KCc9dyyhmUeq58 attendees
•OnlinePhysics Essentials: Modern Mechanics
OnlineJoin us in a guided group study of the most essential subject in physics: mechanics! Unlike your high school or college mechanics course, we're following two deeply insightful textbooks:
- Modern Classical Mechanics, by Helliwell and Sahakian, is our primary text. It offers a fresh take on classical mechanics, treating it as a logically coherent system rather than a bag of tricks. It introduces powerful tools like the Euler-Lagrange equations and Hamiltonian dynamics without assuming a deep math or physics background. The authors focus on the “why” behind the equations, helping readers see the physical ideas and symmetries that unify different problems.
- Mathematical Methods of Classical Mechanics, by V.I. Arnold, emphasizes the deep, geometric language of physics. We use this as a secondary resource. Arnold’s approach connects simple Newtonian mechanics to powerful ideas like manifolds, symplectic structure, and group theory – concepts that also show up in quantum mechanics and modern physics.
The material starts with familiar concepts and carefully develops them into advanced topics. Don't worry if you feel like you don't have enough background for the latter; our group is incredibly friendly and paced to support learners from a variety of backgrounds. We encourage questions, discussions, and a spirit of curiosity. Whether you're revisiting physics or exploring it for the first time, you're welcome here.
What to expect – Here is our current format:
- Before each meeting, we will assign ourselves a reading and a set of exercises that everyone is invited to try for next time. (All of this is optional and there is never anything expected or required – this is a self-study group!)
- During the meeting, one or more volunteers will teach the lessons from the assigned readings, and others will present their solutions to (or attempts at!) the exercises.
- Between meetings, we will collaborate through our chat server and/or small study sessions during "office hours". New members should especially take advantage of these to get up to speed. Ask us for details and links to these fantastic resources!
Prerequisites: So long as you have taken at least some amount of college calculus and physics at some point in your life, you should be fine.
We maintain a live chat server for staying in touch between meetups. Ask us for a link.This event joins our other existing collaborative study tracks. Please note that this particular meetup series is a highly mathematical meetup for everyone who is serious about learning field theory at a graduate or advanced undergraduate level. It is not a general discussion group for popular physics topics or sci-fi tangents. For casual physics chat, please attend our regular Discuss Physics and Make Friends event, held every third Wednesday of the month.
Having technical trouble joining the meeting? You need to use the Zoom app and log in with a (free to create) personal Zoom account before you can join our meeting. You might not be able to join directly from a web browser if you can’t log in.
4 attendees
•OnlineMastering Quantum Mechanics
OnlineThis quantum mechanics track will utilize Barton Zwiebach's Mastering Quantum Mechanics, with optional supplementation from his lecture series which are freely available online on YouTube or MIT OpenCourseWare. We will be starting off in Section II, Theory.
Some experience in quantum mechanics is expected, but new attendees may feel free to catch up as we go along. For reference, many of us recently finished watching Allan Adams' Quantum Physics I lecture series.
If you have just found this event and are worried that you're too far behind, don't worry! Our meetups are expressly structured to encourage and invite people to join us at any point and at any level of prior knowledge, as long as you've had at least some exposure to calculus and basic physics in the past. You are definitely welcome here!
We also maintain a live chat server for staying in touch between meetups. Ask us for a link.
This event is one of the many other collaborative study tracks in our Physics With Friends community. Check out all of our other events to find additional physics topics that you might want to study together!
Please note that the Mastering Quantum Mechanics meetup series is a highly mathematical meetup for everyone who is serious about learning the advanced branches of math and physics that one needs to master in order to deeply understand the equations and applications of QM. It is not a general discussion group for popular physics topics or sci-fi tangents. For casual physics chat, please attend our regular "Discuss Physics and Make Friends" event, held every third Wednesday of the month.
3 attendees
Past events
991

